
SIMIC Engineering Guide

For

IC Design Verification

Genashor Corp.
9 Piney Woods Drive

Belle Mead, New Jersey 08502

Tel: (908) 281-0164

Fax: (908) 281-9607

Copyright 1992, 1993 Genashor Corp.
All Rights Reserved.

Duplication Prohibited.

For U.S. Government use:
Use, duplication or disclosure of this guide by the Government is subject to restrictions as set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.277-7013, and in subparagraphs (a) through (d) of the Commercial Computer-Restricted
Rights clause at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when appli-
cable.

For Non- U.S. Government use:
No part of this guide may be reproduced in any form or by any means without the written permis-
sion of

Genashor Corp

9 Piney Woods Drive

Belle Mead, NJ 08502

Telephone: (908) 281-0164

Fax: (908) 281-9607

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp.

Table Of Contents

Introduction ...1

Overview ...1

Organization Of This Guide ...1

Historical Perspective ...2

Simulator Performance ...3

Section 1 Functional Verification ...4

Controlling Timing And Hazard Analysis ..4

Circuit Response Time ..4

Simulation Accuracy ...5

Component Interaction ...5

Algorithmic Limitations ...5

Delay vs. Loading ...5

Drive Strengths ...6

Timing ...6

Testcase # 1 – Bus Hold Circuit ...7

Testcase #2 – Paralleled Devices ..8

Testcase #3 Dynamic Loading ..9

Testcase #4 Resolving Unknowns For Nonconflicting Wire-ties9

Testcase #5 Oscillations ..10

Testcase #6 Wire-tie Conflicts ..10

Section 2 Timing Verification ...11

Simulation vs. Reality ...11

Warning Messages ..11

X-Pulse Creation And Propagation ...12

Testcase #7 Using X-Pulse Propagation To Uncovering Event Timing Sensitivity13

Combinational Hazards ...14

Functional Timing Checks ..14

What-if Simulation ...16

Debugging Functionality and Timing ...17

Testcase #8 Interactive Debugging ..18

Section 3 Fault Analysis ..20

Testcase #9 Fault Sensitization Analysis ..22

Testcase #10 Fault Simulation ..23

Section 4 Tester Program Generation ...26

Conclusion ...27

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 1

Introduction

Overview

This Guide will provide you with criteria to evaluate logic simulators; either the simulator you are

currently using, or commercial simulators currently on the market. All simulators are not created

equal. They differ in their abilities to model components and component configurations accu-

rately, to locate design problems and provide the debugging facilities to fix them, and to verify

functional test vectors for tester program generation. This Guide also contains simple testcases

that many simulators mishandle; if you have access to one of them, the results could be amusing.

However, if you rely on this simulator to perform final design verification, the results could also

be disturbing.

The importance of a simulator’s ability to help locate and correct design problems cannot be over-

emphasized. Obviously, engineering productivity is increased if these problems can be located

and corrected quickly. Also, product reliability is increased if the simulator supports a robust set

of timing checks, since the corrected design will be more impervious to process and environmen-

tal variations, and less sensitive to input arrival times. Lastly, development costs are significantly

reduced if problems are found before committing a design to silicon, rather than afterwards.

The time you spend reading this informative Guide will be well rewarded with the perspective

gained on necessary and desirable simulator capabilities and, by contrast, on the shortcomings

and idiosyncracies of some commercial simulators. Of course, since we want to convince you that

SIMIC is the best simulator available today for verifying real designs, many of these capabilities

are illustrated by describing SIMIC features. We believe that if you are seeking the most effective

design verification tools, you will be convinced, after reading this material, that SIMIC definitely

belongs in your design system.

Organization Of This Guide

The design cycle can be conceptually divided into three phases. Section 1 discusses the first

phase, functional verification, which addresses the design’s correctness and completeness. The

questions addressed in this phase are fundamental: have the functional specifications been met? is

the architecture correct? is the polarity of every signal correct (missing inverters)? etc. Simulation

is usually performed with TYPICAL delays, but MINIMUM or MAXIMUM delay simulations

may also be used when the design’s response time is critical. Statistical wiring delays may be

incorporated into the circuit description.

Section 2 discusses the second phase, timing verification, which addresses the question of

whether the design could have timing problems when implemented in silicon. Post-layout wiring

delays are incorporated, and pessimism is introduced to account for possible differences between

simulation and physical operation.

Section 3 discusses the third phase, tester program verification. As with timing verification, pessi-

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 2

mism and wiring delays are used to detect potential testing problems that might arise, this time

because of input skew and small timing margins between output strobes and output transitions.

In all phases, simulation accuracy is obviously essential. Also, the simulator should be capable of

“expecting the unexpected”, and help the user find problems as quickly as possible. For example,

the simulator should:

(a) report unexpected or undesirable situations—oscillation, wire-tie conflicts, simulta-

neously-driven busses (in busses where only one driver should be active at any time),

HIZ at unidirectional gate inputs, etc.,

(b) report the time required for the circuit’s state to become stable, and signals that are still

active beyond a specified time limit (Section 2 discusses the significance of these

requirements),

(c) perform timing checks (setup, hold, etc.),

(d) support interactive debugging—break on specified condition, trace activity, save/

restore state, force/release values at selected signals, etc., and,

(e) perform extensive topological and electrical checks (undriven gate inputs, overloaded

driver, wire-tied non-tristatable gates, etc.).

Historical Perspective

Prior to digital simulation, designers would “breadboard”, or build a prototype of the circuit,

using discrete components, and connect signal generators, logic analyzers, and oscilloscopes to

debug the circuit. It soon became apparent that breadboards were inadequate to predict the behav-

ior of integrated circuits; prototypes and manufactured ICs differed greatly in timing, device prop-

erties, and interaction with their external environments. For circuits containing a small number of

devices, typically under 100 elements, the use of circuit simulation (i.e., analog simulation at the

device level) was effective, but required significant post-simulation analysis of the results. With

increasing circuit size, this approach became impractical, due to the extensive CPU and analysis

time required. Rudimentary logic simulators were developed in the ‘60s to check design function-

ality. These early simulators usually performed functional verification in the absence of timing (or

used arbitrarily timing, such as unit-delay).

More sophisticated simulators were developed internally by design houses and foundries that

reflected the major concerns of their design environments. Simulation accuracy was the primary

goal, the sine qua non for determining manufacturability. In the late ‘70s, a number commercial

CAE vendors began promoting simulation capabilities within their design system. The figure of

merit for logic simulators somehow shifted from accuracy to speed. These vendors battled over

performance (whose simulator performed the highest number of events or element evaluations per

second). In this battle, accuracy at the gate level suffered, as the electrical properties of gates

became more abstracted to obtain additional performance. As these commercial simulators gained

popularity in the ‘80s, design houses began abandoning their internally-developed tools to reduce

their overhead and maintain compatibility with their customer base.

Vendors of current commercial simulators have attempted to reconcile these inaccuracies by

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 3

force-fitting some electrical effects into their abstracted models. However, without building fun-

damental accuracy into the simulator’s kernel, incorrect results can still be obtained that, under

certain conditions, can yield steady-state deviation from actual device operation. Many simulators

provide only basic capabilities in the simulator’s kernel, necessitating workarounds in the models,

which could detrimentally impact overall performance.

Many of SIMIC’s features have been utilized in proprietary simulators (developed by Genashor

personnel as early as 1974) that have received worldwide acclaim. The success of these concepts

in finding design problems before manufacture has been verified by a number of large IC design

houses. This track record is the basis of the simulation philosophy found in SIMIC. SIMIC builds

on these concepts to bring a new level of accuracy and performance to logic simulators. It per-

forms many topological and electrical rules checks as well as sophisticated hazard and timing

analysis. Debugging circuits is simplified by SIMIC’s unique interactive control and reports.

Simulator Performance

Simulator vendors usually advertise one of two simulator performance measures: evaluations per

second and events per second. These terms appear to be self-explanatory and universal, that is, a

property of the simulator that is independent of the circuit being simulated. Unfortunately, actual

performance on your real design may never come close to the advertised values, since it indeed

depends heavily on circuit activity, delay distribution, and the simulator’s primitive set. The ven-

dor-supplied numbers are usually based on a best-case circuit that minimizes event scheduling

and propagation, and slow activity such as output. The measures can also be misleading because

they may not correspond exactly to common usage. For example, “events per second” should

indicate the number of signal value transitions calculated per second. At least one vendor, how-

ever, defines this as the number of scheduled operations per second, where “operations” include

simulator bookkeeping functions and other artifacts, dramatically inflating the performance value.

Also, “evaluations per second” should indicate the number gates evaluated per second in order to

determine their corresponding output values. However, some simulation algorithms force gates to

be evaluated even when no activity occurs at their inputs. Thus, the measure is inflated, since the

number of useful evaluations may actually be small.

Be suspicious of vendor’s performance claims. For example, while simulating identical (and real)

circuits, one simulator reported approximately 1,000,000 events per second in its ‘accelerated’

mode, while SIMIC reported about 50,000. However, both simulators required virtually the same

wall clock time (on a single user environment) to complete. The only way to evaluate relative

simulator performance is to ignore the vendor supplied performance figure, simulate circuits that

represent your typical design style, and measure the actual throughput for each circuit.

Finally, be very careful to select identical simulation options and analysis levels for comparison.

For example, most of the per-element processing time in SIMIC is associated with hazard analy-

sis; evaluation time is relatively short. You may have to suppress SIMIC combinatorial and func-

tional timing analysis to make it “compatible” with the other simulator. Also note the system

resources needed to simulate your testcases. In the testcase described above, the other simulator

required almost 4 times the memory (30 MB) to simulate the same circuit as SIMIC (8 MB).

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 4

Section 1 Functional Verification

In this design phase, the simulator is used to verify the design’s completeness and correctness.

The issues addressed here are fundamental. For example: have the functional specifications been

met? is the architecture correct? is the polarity of every signal correct (missing inverters)? etc.

Simulation is performed with nominal timing—TYPICAL, MINIMUM, or MAXIMUM. Infor-

mation about, and propagation of, transient pulses is suppressed.

Controlling Timing And Hazard Analysis

While the ultimate goal is to obtain working silicon, functional verification is sufficiently com-

plex that it should be performed as a separate task. It is difficult enough to determine that the log-

ical design is correct; if, in the process, the designer must also track down timing problems that

cause signal values to become either incorrect or unknown, this task can become exasperating.

Thus, the simulator should allow you to selectively disable timing checks and hazard analysis for

functional verification, and enable them for timing verification. For example, if you do not spec-

ify analysis options to SIMIC, its default operation is to perform spike propagation and flip-flop

timing checks. A single SIMIC run command can disable all spike propagation; another will dis-

able all timing checks.

It may not be desirable to disable all simulation checks for functional verification, since incorrect

logical design can sometimes be detected by “pathological” behavior. Two common situations are

wire-tie conflicts (possibly caused by incorrectly decoding control signals for tristating gates, or

by improper test stimuli) and oscillations (possibly caused by odd inversion polarity or by pulses

in feedback loops). Examples of these situations are given in Testcase #5 and Testcase #6 below.

By default, SIMIC checks for both conditions. Although each check can be disabled (again, with

a single command), it may never be advisable to do so.

Circuit Response Time

Design specifications usually require that outputs respond to input stimuli within given time lim-

its, or that the circuit state always stabilize within a given time limit in order to meet a target oper-

ating frequency. The simulator should facilitate verifying whether specified design limits have

been met.

Most simulators have no built-in concept of circuit stability or response time, so verification often

requires analysis of voluminous simulation data describing all simulated events. SIMIC supports

a unique simulation mode that is oriented exactly to this task. In fact, it supports three modes:

(a) Pattern Stimuli – each new primary input state is applied only when the circuit state

stabilizes in response to the previous input state. SIMIC will report the minimum and

maximum response times of each primary output, and the circuit stabilization time

required for each input state.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 5

(b) Waveform Stimuli – the time of every primary input event is user-specified; this is the

stimulus mode found in almost all simulators.

(c) Tester Emulation Mode – primary input events are described as time-sets, and output

strobes are define, to debug tester functional tests during simulation.

Simulation Accuracy

Most modern commercial simulators provide the basis for creating component models, either by

supporting a comprehensive set of built-in primitives or by providing methodologies to define

new primitives (e.g., by specifying truth tables or boolean equations, by supporting hardware

description languages, or by supporting an interface to models written in programming languages

such as C). They also allow specification of component propagation delays and support general

event scheduling mechanisms. Since a “design” is the implementation of a circuit in a particular

technology, and since most simulators provide the capability of creating standard or custom cell

models that are as accurate as the library developer can make them, shouldn’t these simulators be

capable of simulating an entire design accurately?

Unfortunately, the answer is no.

First, even if the library developer does his/her job flawlessly, unexpected behavior could result

from the simulator’s handling of the model, rather than from the model itself; some simulators

have interesting algorithmic “quirks” that produce erroneous results under certain conditions. For

example, one widely-used simulator supports a component pin-to-pin delay algorithm that pro-

duces the correct response when a single input changes state, but sometimes generates very inter-

esting, and very wrong, responses when multiple inputs change within path delay intervals.

Second, while unexpected model behavior can be a problem, the most common source of inaccu-

racy is the simulator’s inability to handle component interaction properly, or to supply modeling

constructs for resolving component interaction.

Component Interaction

Algorithmic Limitations

Even if a simulator can model each component precisely, algorithmic limitations within its event

processing routines may cause it to mishandle component interaction. Testcase #1 illustrates a

simple, but fundamental, circuit that few, if any, simulators other than SIMIC handle correctly. It

contains tristating drivers and a latch-type bus-hold circuit. Usually, algorithmic errors cause false

transient pulses at wire-ties, but with the bus-hold, the result is a steady-state error.

Delay vs. Loading

Clearly, if the simulation results are to correspond to reality, the modeled propagation delays must

be as accurate as possible. Thus, each signal’s propagation delay must be based on the signal’s

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 6

loading. Some commercial simulators do not support automatic delay vs. loading computation.

For these simulators, you (or an ASIC vendor) are burdened with the responsibility of writing

auxiliary programs to compute propagation delays from the netlist and from cell pin capacitances.

In contrast, if the simulator supports delay vs. loading computation, as SIMIC does, not only is

the user freed from this task, but simulation accuracy can be increased as well. Two of the

testcases that follow illustrate this: SIMIC automatically computes the equivalent delay of paral-

leled elements (Testcase #2—other simulators require workarounds to handle paralleled ele-

ments) and dynamically adjusts driver delays when switches add or remove loading at the driver

outputs (Testcase # 3). Incorporating delay vs. loading into the simulator also facilitates backan-

notation of wiring delays from the layout and experimentation with statistical wiring delay param-

eters without having to change the network description or recompile it, since the simulator can

recompute the new parameters automatically at run time.

Drive Strengths

Some simulators do not support multiple signal strengths. Lacking this model, circuits that require

one driver to overpower another (such as the bus-hold circuit in Testcase #1, RAM cells, etc.)

would be difficult or impossible to model structurally (a behavioral model would be required as a

workaround—this would destroy the integrity of the netlist). Current standard cell libraries may

require at least three levels of gate drive strength; SIMIC provides four.

Typical custom designs contain a large range of device sizes. At least four orders of magnitude in

resistive strengths may be required to model these circuits properly at the switch-level. Thus, sim-

ulators with switch models having only a few levels of strength cannot be used for verifying net-

works extracted from layouts. This application requires a simulator specifically oriented toward

handling extreme device size variations. For example, SIMIC supports 32K resistive gradations

for switch-level simulation.

In addition to supporting drive strengths, it is also necessary for the simulator to keep track of

ranges of drive strength and/or level when unknown values arise. A typical situation is illustrated

in Testcase #4. Here, the value of a tristating driver’s control input is unknown, but its data input

has the same value as the data input of a second driver that is enabled. Thus, the value of the com-

mon bus driven by these elements is determinable. In order to handle this situation, the simulator

must be capable of representing the output value of the first element as “anything from tristating

to a driven logic-0”. This range of possible values is called an “interval”. Some simulators do not

support intervals, and therefore would set the bus of Testcase #4 to the unknown (X) value. In

SIMIC, intervals can represent the full range of 32K strength/value pairs (approximately 2.14 bil-

lion combinations).

Timing

Perhaps the most discussed and worried-about interaction between components is event timing.

Are events at an element’s inputs too close for comfort? Has a setup/hold/pulse-width constraint

been violated? Is the circuit sensitive to minor variations in delay and/or input arrival times?

These issues are the subject of Section 2.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 7

Testcase # 1 – Bus Hold Circuit

Most modern designs employ busses with multiple drivers that are often dissimilar in drive char-

acteristics and speed. If the simulator cannot account for the combined effects of the drivers, it

can predict timing incorrectly, potentially mask transient behavior, or generate erroneous behav-

ior. This example illustrates a bus hold function, common in bus-oriented designs. Since the cir-

cuit contains feedback, it demonstrates the possibility of steady-state value discrepancies between

the physical design and simulation.

In this example, two tristatable drivers are connected to the common bus, BUS (typically, there

would be more). Only one receiver, Part E, is illustrated, but there are typically more. The bus

hold consists of a two-inverter loop, where one inverter, Part D, contains small transistors. When

any driver is enabled, it overpowers the small devices in Part D. When all drivers are disabled,

Part D provides enough drive to maintain the last driven value. Its large delay arises from its high

ON-resistance and the significant capacitance on BUS, and is really associated with the time

required for Part D to charge the bus to the complementary state, assuming all other drivers are

disabled. But what if another driver has already charged the bus?

This circuit can be modeled by assigning the tristating drivers a higher drive strength than Part D

(e.g., DRIVING vs. RESISTIVE strength). The non-inverting drivers are ON when their

ENABLE inputs are logic 1, and instantly tristate when their enable inputs are logic 0. The input

waveforms shown below initially drive BUS to logic 0 via Driver A. At time=200, Driver A

tristates, and BUS is maintained at 0 by Part D. At time=210, Driver B is enabled and Data B rises,

forcing BUS to logic 1 at time=220. Driver B is then disabled at time=260, well after all signals

should have stabilized.

Does the simulator predict that the bus will lose the last driven logic 1 value? If so, it has intro-

duced a steady-state error! SIMIC properly holds the bus at logic 1.

(Delay=10)

(Delay = 100)

RESISTIVE strength

(Delay = 10)

Data A

Signal BUS

A

Enable A

C

D

E

(Delay=10)

(Delay=0)

(small device]
BUS HOLD

DRIVING strength

Data B B

Enable B

(Delay=10)

(Delay=0)

DRIVING strength

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 8

Testcase #2 – Paralleled Devices

In order to boost drive capabilities beyond that of available cells, a common method is to connect

functionally identical cells in parallel. The combination is equivalent to a single gate with the

electrical characteristics merged. resulting in a reduction in load-dependent delay.

If the simulator does not merge these properties, then a special model must be manually created to

replace the parallel gates with a single device. This is not only prone to error, but it also invali-

dates the network description if used for other programs, such as place and route. In contrast with

other simulators that require the manual workaround to preserve simulation accuracy, SIMIC will

group any paralleled combinatorial gates, ideal switches and resistive switches, convert each

group to a representative single device, and merge electrical characteristics.

??BUS
1

0

Enable A

Data A

Enable B

Data B

BUS

200 210 220 230 240 250

90

280 290 300 310260 270

1

0

1

0

1

0

0

correct response

steady-state error

1

0

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 9

Testcase #3 Dynamic Loading

Many simulators provide switch level primitives, either ideal (resistanceless) or resistive. SIMIC

has both. In the case of the resistanceless switch, nodes connected by ports of the switch can be

dynamically connected (tied) and disconnected during simulation. This causes a change in the

loading as seen by the node drivers. The simulator should be able to dynamically adjust the delays

of these drivers to reflect the changing load conditions.

Testcase #4 Resolving Unknowns For Nonconflicting Wire-ties

If there is no possibility of conflict at a wire-tie, the simulator should be able to properly deter-

mine the value when uncertain strengths and values exist. The following circuit illustrates the

problem:

The unknown enable (X) at the Enable input of Part A makes the output ambiguous; either it could

be tristating (Z) or driving logical-0. Because Part B is driving logical-0, there is no possibility of

a conflict, and the resultant wire-tied value should be logical-0. SIMIC utilizes an interval repre-

sentation for ambiguous driven values to properly resolve this type of situation. This representa-

tion covers the 2.14 billion possible intervals associated with SIMIC gate and switch primitives.

A

B

C0 C1

When B=0:

The delay at element A

should reflect a loading

of C0.

When B=1:

The delay at element A

should reflect a loading

of C0 + C1.

0 A

X

0 B

1
C 0

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 10

Testcase #5 Oscillations

Oscillation can occur if an odd number of inversions are inadvertently placed in a feedback loop,

or if transient pulses arise within the loop. Since this situation could cause the simulation to con-

tinue indefinitely, or introduce events into the simulation output that might require considerable

time to track down, oscillation should be trapped and squelched (force the oscillating signals to an

unknown (X) state).

For example, a cross-coupled NAND latch is one of the most common culprits causing inadvert-

ent oscillation. If, in the latch shown above, we let the circuit stabilize with both A and B logic 0,

and then simultaneously change A and B to logic 1, the circuit becomes unstable and oscillates. If

this condition is buried in a large design, can the simulator report the problem rather than ignore

it? SIMIC will trap the oscillation, set the oscillating signals to X to quelch activity, and issue a

warning message (unless suppressed by the user). In addition, the user may set a breakpoint when

oscillation is detected to freeze the circuit state and determine the problem’s cause.

Testcase #6 Wire-tie Conflicts

Wire-ties driven to unknown values because of contending multiple drivers should be trapped and

reported. Some simulators provide no warning that a wire-tie conflict has occurred, or will only

report conflicts at busses specified by the user. If you miss some wire-tie conflicts during simula-

tion, the implementation in silicon could be power consumptive.

By default, SIMIC reports all wire-tie conflicts. In addition, the user may set a breakpoint when

any conflict occurs, in order to investigate and correct the problem.

Q
A

B

(Delay = 10)

(Delay = 10)

NQ

0 A

1

1 B

1
C X

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 11

Section 2 Timing Verification

After you have verified that the design functions correctly with propagation delays at nominal

values, the next step is to check that sufficient tolerances exist between “close events”. This is

typically done in the post-layout simulation (or additionally, prior to layout using statistical

delays), where the effects of wiring delays are included. Stating the requirement for this simula-

tion phase, the simulator should provide reasonable confidence that if the design were committed

to silicon, the operation of the physical circuit would remain as predicted.

Simulation vs. Reality

The fundamental problem associated with using simulation to verify timing tolerances is that the

silicon will never really operate exactly as modeled, either in its intended environment or on the

tester. That is, even if the cell delay parameters and wiring capacitances are obtained from a large

database of production testing and characterization, the simulation results may never be repro-

duced in the “real-world” because:

(a) Process variations will cause device operation to differ from simulation at the MIN,

TYPICAL, and MAX delay points in an unpredictable manner. For example, since p-

and n- transistors are deposited at different (therefore independent) steps, some CMOS

devices may have fast n-transistors and slow p-transistors, or vice versa, or wiring

delays may be larger in some production batches than in others, etc.

(b) Primary input events may not arrive exactly at the times modeled during simulation.

(c) Small propagational delay modeling errors in the cells and/or in the wiring delay esti-

mates can accumulate when events propagate through many levels of logic. Since sim-

ulation usually is performed in integral time increments, this effect could be magnified

by truncation or rounding of computed delays.

Thus, when performing simulation for timing verification, measures must be incorporated to

account for the uncertainties of simulation—the possible differences between computed and

actual operation.

Warning Messages

The simplest method of handling “close events” is to issue warning messages whenever they

occur (some simulators don’t even provide this basic service). Warning messages are helpful, but

they can be overwhelming. Thousands of messages could be generated, of which only a few may

be critical. Since manual investigation of each message will be very tedious, large files containing

warning messages are generally either be ignored or superficially examined.

The simulator should therefore provide some method of limiting the number of warning messages

to a manageable amount. Most don’t! In contrast, SIMIC not only supports selection of which sig-

nals to monitor, it also allows specification of the maximum number of messages that should be

issued for each signal. (If, say, 10 wire-tie conflicts, or 10 close events, are reported at a particular

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 12

signal, you will suspect that “something is happening” at that part of the circuit; hundreds of mes-

sages aren’t necessary to attract your attention.)

Another basis for reducing the number of warning message is the observation that some timing

problems may be more important than others. For example, timing problems at flip-flops are crit-

ical, but transients in combinational logic may not be relevant if this logic does not fan out to

sequential elements, or if the transients cannot be clocked into flip-flops. Therefore, SIMIC pro-

vides a unique additional option for reducing the number of warning messages—that only prob-

lems occurring at flip-flops be reported (either that a timing problem has been detected, or that an

unknown value has been clocked into a flip-flop). This option can be very effective for quickly

isolating and correcting critical timing problems, when used in conjunction with X-pulse propaga-

tion (see below); once the sites of steady-state errors have been identified, the simulation can be

rerun, this time with warning messages selectively enabled for those sections of the logic that feed

the flip-flops in question, to determine where and how the timing problems originated.

X-Pulse Creation And Propagation

The fundamental problem with relying solely on warning messages is that the consequences of

“close events” in combinational logic generally cannot be traced, to determine whether their

effects are critical, because of inertial filtering.

Consider, for example, a spike, which is a transient condition at an element output where, in the

course of simulation, (1) an event at the element’s inputs causes an event to be scheduled for the

output, but then (2) a second input event occurs prior to the scheduled event time that causes the

new output value to differ from the scheduled value. (This condition is also called a “glitch”).

Since the primary source of delay is capacitive net loading, simulators use an inertial delay model,

where transient pulses narrower than an output’s response time, i.e., smaller than the time

required to charge or discharge the output’s net capacitance, are suppressed (filtered out).

Thus, after reporting the occurrence of a spike condition, the simulator filters the resulting output

transient, and there is no way to determine which element of the output’s fanout cone might have

been affected.

A better approach is to introduce an unknown (X) value whenever this situation occurs. If it is

blocked from propagation farther downstream in the combinational logic, or propagates to an

unloaded element, the “close event” is harmless. Alternatively, if the X value is sensitized to a

flip-flop, it would be latched in. This technique, called “X-pulse” propagation (or “spike propaga-

tion”), therefore “automatically” distinguishes between irrelevant and relevant close events.

Testcase #7 illustrates use of X-pulse propagation to uncover sensitivity to element delays.

Some simulators don’t support X-pulse propagation. In those that do, there is no single method of

implementing it; different simulators incorporate different criteria for determining (a) whether an

X-pulse should be generated, and (b) how wide the X-pulse should be. Of all commercial simula-

tors, SIMIC supports the most flexible user-control of X-pulse creation; you can specify these cri-

teria on a per-signal basis.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 13

Testcase #7 Using X-Pulse Propagation To Uncovering Event Timing Sensitivity

Description:

This circuit is a DIVIDE-BY-7 counter containing negative-edge-triggered T flip-flops with

active-low asynchronous SET and RESET inputs. (To exercise this circuit, simply apply a reset

pulse and a clock sequence.) Without the feedback logic generating signal SKIP_2, the counter

would simply divide by 8. However, when the counter state reaches 2 (Q1,Q2,Q4=010), SKIP_2

goes to logic-0, setting Q1 to logic-1 and thereby skipping to state 3. The width of the LOW pulse

at SKIP_2 is self-timed, since it disappears as the new state of Q1 propagates through NQ1_Q2

back to SKIP_2. Assuming that CLOCK’s LOW pulse-width is sufficient, this reset pulse should

cause no internal flip-flop timing problems (CLOCK’s LOW pulse should be at least τ+11 time-

units wide, where τ is the propagation delay from each flip-flop’s T input to its Q output).

If you have access to a simulator, you can perform an interesting experiment. First, try simulating

this circuit without spike propagation to verify that it indeed divides by 7. Then, enable spike

propagation and resimulate. Does the simulator now set the counter state to an unknown value, as

SIMIC would? If it doesn’t (most simulators will not), you have just missed a real timing prob-

lem, since this circuit is very sensitive to timing variations! To see this, simply change the delay

of signal NQ1_Q2 from 3 time-units to 2 and resimulate. The counter will now divide by 6!

Testcase #8 illustrates how SIMIC can be used to debug this circuit.

clock

q1

cl2

reset

cl4

q2

skip_2

nq1_q2

nq2

nq4

(rise=6)

(fall=3)
(3)

(2)

(1)

q4

VDD

ff4

T Q

NS

NR

ff1

T Q

NS

NR

VDD

ff2

T Q

NS

NR

Notes:

(1) Numbers in parentheses are nominal rise and fall delays—if rise and fall are not speci-
fied, then these delays are equal.

(2) Flip-flop ff1 can respond to a 1 time-unit wide LOW pulse at its NS input.

(3) Flip-flop propagation delay from the fall at T to the Q transition (rise or fall) is any rea-
sonable value, say τ.

(0) (0)

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 14

Combinational Hazards

From the above, you have probably concluded that in order to be capable of verifying an IC

design, the simulator must be able to detect potential hazard situations such as spikes, and option-

ally generate a warning message and/or X-pulse when these situations occur. This is absolutely

correct, but there is even more to consider.

SIMIC has the most robust set of combinational timing checks in the industry, including spike,

narrow pulse, and near (what if) hazard checks. To illustrate these cases, consider a two-input

AND gate with the first input rising and the second falling, as illustrated on Page 15.

(a) If the first input changes much earlier than the second, a large output pulse is created.

But if the two input transitions are fairly close, such that the output pulse width, W, is

comparable to the signal’s average propagation delay, it becomes questionable

whether the pulse will actually occur in the real circuit, where input arrival times may

differ from simulated event times. In SIMIC, this short pulse is a pulse hazard.

(b) If the input transitions were even closer, the point will be reached where the pulse no

longer occurs in simulation due to the inertial delay of the gate (D < output delay).

This situation is the classic spike hazard described above.

(c) If we continue to move the edges closer, they will eventually occur at the same time

and then, the second input transition will occur before the first. Even when simulation

produces a “clean” output, SIMIC supports a time analysis window of close input

events (D comparable to the output’s average propagation delay). If the output’s

response is sensitive to the order of the input events, SIMIC flags the condition as a

near hazard; in the real circuit, the first input transition may actually arrive before the

second, causing a pulse that was never predicted during simulation. This is one exam-

ple of “what-if” simulation. Near hazards can also be propagated as a X-pulses.

Since pulse and near hazards are also situations where differences in timing and input arrival

times can cause discrepancies between simulation and reality, the simulator’s ability to find tim-

ing problems is incomplete without these checks.

Functional Timing Checks

Combinational hazards are not the only source of timing problems. For example, events can prop-

agate through logic very cleanly, but arrive at flip-flops too close to active clock edges. Thus, the

simulator must also be capable of performing timing violations checks for sequential elements.

These include setup time, hold time, and pulse-width checks for each applicable element. In addi-

tion to issuing warning messages, the simulator should help the designer locate the problem by

optionally setting the element output (and possibly the internal state) to unknown (X) when a true

hazard occurs.

In order to eliminate improper warnings, or false alarms, these checks should be based on the ele-

ment’s functionality, that is, should verify that the input event in question actually has an effect on

the element’s state.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 15

SIMIC Combinational Hazard Checks

W

C
A
B

B

A

C

(a) Pulse Hazard

B

A

C

D

(b) Spike Hazard

B

A

C

D

(c) Near Hazard

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 16

As an example, consider the functional timing checks incorporated into SIMIC. In contrast with

other simulators that perform “blind” or unconditional checks based strictly on event times at flip-

flop inputs, SIMIC handles timing violations in a functionally consistent manner – warning mes-

sages are issued, and/or flip-flops are set to the unknown state, only when the flip-flop’s state is

uncertain.

SIMIC allows the user or library developer to completely and independently control both warning

messages and propagation of unknowns (X) due to violations of the following flip-flop timing

checks, which are specifiable as functions of flip-flop loading:

(a) Pulse-width checks – SET, RESET, CLOCK (0 and 1 pulse-widths of clock)

(b) Setup-time checks – minimum time an input must be stable prior to the active clock

edge:

DATA D- input of D flip-flop or latch, J or K inputs of JK flip-flop

SET When the value of DATA is 0

RESET When the value of DATA is 1.

(c) Hold-time checks – minimum time an input must remain stable after the active clock

edge: DATA, SET, RESET.

The sequence of inputs shown below illustrate SIMIC’s functionally consistent timing checks to

eliminate false alarms. The first active (rising) clock edge reliably clocks in a 0 from the D input.

Thus, even though a narrow RESET pulse occurs, the flip-flop’s state is never uncertain, so

SIMIC will not issue a warning message nor set its state to X. (However, it can issue an informa-

tory message, since the user may want to know that a violation occurred.)

When the second narrow reset pulse occurs, the final state of the flip-flop is uncertain, and SIMIC

will issue a warning message, and/or set the flip-flop state unknown, according to the user-speci-

fied options.

What-if Simulation

In order to test tolerances within the design, the simulator should facilitate experimentation. For

example, the question “what if setup times were 10% larger?” is easily answered in SIMIC, since

a single command can change all setup time limits (or hold time limits, or pulse-width limits, or

rise times, etc.) by any given amount, without having to recompile the circuit.

NR

C

Q

NR

D
D

C

Q

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 17

Debugging Functionality and Timing

When a problem has been discovered, the simulator should provide capabilities to facilitate trac-

ing the problem to its source. In the process, it should allow simulation parameters to be modified

so the user can test hypotheses and implement possible corrections. To maximize debugging pro-

ductivity, the simulator should allow the user to work interactively, starting from the point in the

simulation where the problem occurs. Important debugging operations are:

(a) Set Breakpoints. The simulator should provide a robust way of specifying the condi-

tion to stop the simulation, so that interactive mode can be entered. For instance,

“when signal XYZ enters an X state after simulation time 10000”, or “whenever a

setup time violation occurs”, etc.

(b) Save and Restore State. The simulator should provide the capabilities to save the state

of the network, and then restore it. This operation should be capable of performing a

simulation checkpoint (where the same sequence of patterns will be repeated after the

restored state), or network initialization function (where new sequences of patterns can

be applied to the restored state)

(c) Modify network state. Signal values, plus values internal to memory elements (flip-

flops, RAMS, ROMS) should be interactively modifiable.

(d) Modify simulation parameters. Delays, decays, etc. should be interactively modifiable.

(e) Interrogate circuit state and trace circuit activity. The simulator should allow individ-

ual signals to be interactively probed, memory locations to be interactively examined,

and activity to be traced during simulation for selected sections of the circuit, or for the

entire circuit.

Testcase #8 demonstrates a small portion of SIMIC’s debugging capabilities; it illustrates a

debugging session for the divide-by-7 circuit of Testcase #7. It is interesting to note that most

other simulators will not detect the timing problem inherent in this design.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 18

Testcase #8 Interactive Debugging

This testcase illustrates a SIMIC debugging session for the DIVIDE-BY-7 circuit (See Testcase

#7 for a description of its operation.)

(a) Simulate the circuit with spike propagation disabled (functional verification). The sim-

ulation produces the intended divide-by-7 function, but SIMIC issues an informatory

message that a spike has occurred (if you do not request spike warning messages,

SIMIC issues a summary message after simulation indicating the number of spikes

that were detected, but not reported).

(b) Simulate again with spike propagation enabled (timing verification). This time, simu-

lation reveals a problem when the circuit goes from count 3 to count 4; the state of the

counter becomes unknown!

(c) Resimulate and generate trace (including causality information) around the time of the

problem. The trace information obtained from SIMIC is shown on page 19. To under-

stand this output, consider the lines:

2 E 8> TRACE(0->X) NQ1_Q2

 C > (0->1) NQ2

 C > (1->0) Q1

Lines that contain the word “TRACE” report a traced event; these lines are followed by

one or more lines that start with “C”, indicating possible causes of this event. The pre-

clock

q1

cl2

reset

cl4

q2

skip_2

nq1_q2

nq2

nq4

(rise=6)

(fall=3)
(3)

(2)

(1)

q4

VDD

ff4

T Q

NS

NR

ff1

T Q

NS

NR

VDD

ff2

T Q

NS

NR

(0) (0)

Notes:

(1) Numbers in parentheses are nominal rise and fall delays—if rise and fall are not speci-
fied, then these delays are equal.

(2) Flip-flop ff1 can respond to a 1 time-unit wide LOW pulse at its NS input.

(3) Flip-flop propagation delay from the fall at T to the Q transition (rise or fall) is any rea-
sonable value, say τ.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 19

 0 E 8> TRACE(1->0) CLOCK

 0 E 8> TRACE(1->0) CL4

 C > (1->0) CLOCK

 0 E 8> TRACE(1->0) CL2

 C > (1->0) CLOCK

 0 E 8> TRACE(1->0) Q1

 C > (1->0) CLOCK

 0 E 8> TRACE(1->0) Q2

 C > (1->0) CL2

 0 E 8> TRACE(0->1) Q4

 C > (1->0) CL4

 2 E 8> TRACE(0->1) NQ2

 C > (1->0) Q2

 2 E 8> TRACE(0->X) NQ1_Q2

 C > (0->1) NQ2

 C > (1->0) Q1

 3 E 8> TRACE(1->X) SKIP_2

 C > (0->X) NQ1_Q2

 3 E 8> TRACE(0->X) Q1

 C > (1->X) SKIP_2

 5 E 8> TRACE(X->0) NQ1_Q2

 C > (0->1) NQ2

 C > (0->X) Q1

 6 E 8> TRACE(1->0) NQ4

 C > (0->1) Q4

 6 E 8> TRACE(X->1) SKIP_2

 C > (1->0) NQ4

 C > (X->0) NQ1_Q2

fix “2 E 8” indicates that the event, NQ1_Q2 changing from logic 0 to unknown (X),

occurred 2 time-units into the 8-th input state (4-th active clock edge). Two events

caused this transition: NQ2’s 0→1 transition (also at time 2 E 8), and Q1’s 1→0

transition (two time-units earlier, at 0 E 8).

We can see that Q1, which is the output of ff1, went unknown at time 3. The causality

information indicates that Q1 went to unknown because SKIP_2 went unknown.

SKIP_2 went unknown at time 3 because NQ1_Q2 went unknown. As described

above, NQ1_Q2 went unknown at time 2 because of the fall at Q1 and the rise at NQ2.

This clearly indicates that a race condition between these two signals caused a spike to

be created at NQ1_Q2, which propagated to SKIP_2 and then to Q1.

(d) Determine corrective action. If this action requires only a modification in delay param-

eters or circuit state to test feasibility, SIMIC allows these changes to be made interac-

tively (here, a delay greater than 2 time-units must be inserted between Q1 and

NQ1_Q2). The circuit should then re-simulated with these changes, for verification.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 20

Section 3 Fault Analysis

Many designs must function reliably in applications where component replacement would be dif-

ficult or impossible. The specifications for these designs typically require high fault coverage,

that is, a degree of testing that is thorough enough to reject a high percentage of defective devices.

The fault coverage specification therefore imposes a requirement on the test stimuli as well as on

the design’s architecture. This specification is usually stated as a minimum acceptable percentage

of all “single-stuck” faults to be detected during testing. Here, each “single-stuck” fault is con-

structed by forcing a single signal or a single element input to be permanently stuck at logical-0 or

logical-1, while all other parts of the circuit function correctly. (Thus, the number of single-stuck

faults is proportional to the number of primary inputs plus the number of element inputs plus the

number of element outputs.) Fault coverage specifications exceeding 98% are not uncommon.

The fault coverage of the test stimuli is determined by performing fault simulation. In addition to

simulating the fault-free circuit, a fault simulator simulates each faulty circuit (typically contain-

ing a single-stuck fault) and compares the correct primary output values with the corresponding

faulty circuit’s output values each time the outputs are examined (strobed). A fault is detected if

at least one output of the faulty circuit is the complement of the corresponding correct value. A

fault is potentially-detected if the only difference between the fault-free and faulty operation is

that at least one output of the faulty circuit is unknown (X) while the corresponding good output

has a known value. Potential detections arise with faults that inhibit initialization (e.g., at CLOCK

or RESET lines), introduce timing problems, or cause contention at tied element outputs.

A substantial amount of engineering time and effort may be required to attain the desired level of

fault coverage. This process can involve multiple iterations of three basic, and time-consuming,

tasks:

(a) generate the test stimuli – this can be a difficult task unless testability has been taken

into consideration during the design process.

(b) perform fault simulation – this can require a large amount of CPU time, since many

faulty circuits must be simulated.

(c) analyze the results – this can be both time-consuming and frustrating, since each unde-

tected or potentially-detected fault must be individually analyzed in order to determine

whether the fault can, in fact, be detected. If so, test stimuli must be generated in a sub-

sequent iteration to detect it, and if not, the reason(s) it cannot be detected must be

documented.

The amount of time required for tasks (b) and (c) depends on the fault analysis tool. First, some

commercial fault simulators are more efficient than others; execution times required for a given

testcase (the same circuit, fault set, and test stimuli) can actually range over several orders of

magnitude. Second, and perhaps even more significant, most fault simulators perform little fault

analysis (except for collapsing faults to reduce execution time), and therefore do not exclude

undetectable faults from the fault grade (coverage) and the list of undetected faults. This analysis

is left to the engineer, and the amount of time required for this manual effort can easily exceed the

CPU time required by the fault simulator.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 21

Thus, the important questions to answer while selecting a fault analysis tool are:

(a) How fast is the tool’s simulation engine?

(b) Can the tool significantly reduce the overall manual effort required to achieve the

desired level of fault coverage?

Consider SIMIC as an example.

First, SIMIC performs a considerable amount of fault analysis prior to simulation; it automatically

finds (and optionally reports) all faults that are topologically undetectable and excludes these

faults from consideration; these are faults at sites that either have no path to a primary output or

cannot be detected because of power-rail connections. Thus, much of the manual per-fault analy-

sis is eliminated.

Second, SIMIC can screen the test stimuli and estimate an upper bound on fault coverage without

performing fault simulation. With little additional overhead to its fault-free simulation engine,

SIMIC will report all faults that are not locally sensitized by the test stimuli (sensitization is nec-

essary, but not sufficient, for detection). SIMIC performs sensitization analysis for both signal

faults and element input faults:

(a) A signal fault is sensitized when the signal’s fault-free value is the complement of the

fault’s stuck-at value; this is called a toggle test, and few simulators perform it.

(b) An element input fault is sensitized when the value at any output of the element

depends on the presence or absence of the fault; this analysis is unique in the industry.

Thus, there is no need to perform fault simulation until an acceptable level of fault sensitization

has been attained. Testcase #9 illustrates sensitization analysis.

Third, like its fault-free simulation engine, the SIMIC fault simulation engine is fast.

Fourth, the SIMIC fault simulator can considerably reduce the overall time required for test veri-

fication. It supports:

(a) Three strategies for handling potential detections, one of which is its unique built-in

resolution algorithm.

(b) Statistical fault simulation (random fault sampling) to quickly estimate fault coverage

and determine those sections of the design that are not sufficiently exercised.

(c) A convenient methodology for performing iterative test generation and verification.

Testcase #10 illustrates the combined effectiveness of SIMIC’s undetectable faults analysis and

its built-in potential detection resolution algorithm.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 22

Testcase #9 Fault Sensitization Analysis

This testcase illustrates fault sensitization analysis performed by SIMIC during fault-free simula-

tion. Since this analysis adds little overhead to the simulation, “unexercised” sections of the

design, i.e., those sections containing unsensitized faults, can be located very quickly. The test

stimuli could be augmented to sensitize these faults, and the new stimuli could then be verified in

a subsequent simulation. This process could be iterated until a satisfactory level of fault sensitiza-

tion is achieved, at which time fault simulation would be perfformed.

The figure below illustrates a majority circuit, and four tests patterns. A small number of commer-

cial simulators perform toggle tests, and they would reveal that signal BC is never logical-1, and

therefore the fault “BC-stuck-at-0” is never sensitized. However, since SIMIC also performs sen-

sitization analysis for input faults, its sensitization analysis report also reveals that four input

faults were not sensitized.

In the sensitization report below, input faults are designated as “part-name;pin-fault_level”. Thus,

the first fault is “pin I1 of part AB stuck-at-1”, the second fault is “signal BC-stuck-at-0”, the

third fault is “pin I1 of part BC stuck-at-0”, etc.

C

M

I1

I2

I1

I2

I1

I2

I1

I3

I2

AB

AC

BC

B

A

A B C M

0 0 1 0

1 0 0 0

1 1 0 1

1 0 1 1

 **** List of Unsensitized Faults ****

AB;I1-@-1 BC-@-0 BC;I1-@-0 BC;I2-@-0 M;I3-@-0

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 23

Testcase #10 Fault Simulation

Ever have to meet a high fault coverage specification, and wind up spending most of the time

weeding out undetectable faults and explaining why faults that were only potential detects should

really have been hard detects? Try this circuit, the supplied stimuli should detect 100% of the

detectable faults.

Description:

This circuit is a Johnson counter (shift register with complementary feedback) containing posi-

tive-edge-triggered D flip-flops with active-low asynchronous SET and RESET inputs. (If other

types of flip-flops are used, the supplied stimuli should be appropriately modified.) The latter

inputs, tied to the normally-high signal, INACTIVE, are disabled, and topologically invisible ele-

ments are introduced, to illustrate two unique features of SIMIC fault simulation:

(1) Resolution of POTENTIALLY-DETECTED faults

Faults on clock and reset lines typically cause the circuit to be uninitializable. Thus, at best, most

fault simulators flag these faults as POTENTIAL DETECTS and discard them. SIMIC, however,

continues to simulate them and, with its unique algorithm, can resolve those faults that become

HARD DETECTS later on.

(2) Removal of undetectable faults

Certain faults are inherently undetectable. This category includes faults that have no topological

path to visible outputs (e.g., OOPS and Q1BAR) as well as certain faults associated with power-

rail connections (e.g., all stuck-at-1 faults at part pins connected to INACTIVE, the INACTIVE

signal stuck-at-1, and the stuck-at-0 fault at the input of the inverter generating INACTIVE).

SIMIC automatically filters out these faults to generate more realistic fault grading. Of course, it

will also generate a listing of all filtered undetectable faults.

CLEAR

CLOCK

Vss

OOPS

INACTIVE

D Q

NS

NR

C

D Q

NS

NR

C

D Q

NS

NR

C

Q1 Q2 Q3BACK

Q1BAR

No topological path to a visible output

I1 I2 I1

I1 I1

I2

F1 F2 F3

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 24

 CC QQQ

 LL 123

 EO

 AC

 RK

 TEST 1: 10 XXX

 TEST 2: 11 0XX

 TEST 3: 10 0XX

 TEST 4: 11 00X

 TEST 5: 10 00X

 TEST 6: 11 000

 TEST 7: 00 000

 TEST 8: 01 100

 TEST 9: 00 100

 TEST 10: 01 110

 TEST 11: 00 110

 TEST 12: 01 111 ⇐ Clock-related faults and CLEAR-@-1 properly detected when output

 TEST 13: 00 111 Q3 executes a 0 -> 1 transition.

 TEST 14: 01 011

 TEST 15: 00 011

 TEST 16: 01 001

 TEST 17: 00 001

 TEST 18: 01 000

 TEST 19: 10 000 ⇐ Begin test for CLEAR-@-0. This fault was not positively detected

 TEST 20: 11 000 above since it is possible that the circuit powered up in the ‘111’ state.

 TEST 21: 10 000

 TEST 22: 11 000

 TEST 23: 10 000

 TEST 24: 11 000 ⇐ CLEAR-@-0 properly detected after 3 shift cycles transfer CLEAR

to output Q3.

Johnson Counter Stimulus/Response Tests For 100% Fault Detection

The test vectors shown above detects every detectable fault in the Johnson counter. For example,

consider the fault CLEAR-stuck-at-0; this fault makes the circuit uninitializable. If the counter

powers-up in state 111, output Q3 would be correct through Test 12; however, Q3 would incor-

rectly go to 1 at Test 24 if this fault were present. If the counter powers up in any other state, Q3

would go to 1 earlier than Test 12, and the fault would be detected then. Thus, this fault is detected

no later than Test 24, exactly the test that SIMIC flags this fault as having been detected.

The next page illustrates SIMIC fault simulation reports for the Johnson counter, when the above

test vectors are used. Here, net faults are designated as signal_name-@-value (e.g., Q3-@-1

means “net Q3 stuck-at-1”), and pin faults are designated as part_name;pin-@-value (e.g.,

F1;D-@-0 means “pin D of flip-flop F1 stuck-at-0”). The first report lists all faults removed

from consideration because they are inherently undetectable. The second report alphabetically

lists all faults simulated and reports the first test that each fault was detected, while the third report

provides the same information organized by test number. The 36 faults listed in the latter two

reports constitute all detectable faults in the Johnson counter.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 25

 TOPOLOGICALLY INVISIBLE FAULTS

 OOPS-@-0 OOPS-@-1 OOPS;I1-@-0 OOPS;I1-@-1 OOPS;I2-@-0

 OOPS;I2-@-1 Q1BAR-@-0 Q1BAR-@-1 Q1BAR;I1-@-0 Q1BAR;I1-@-1

 UNDETECTABLE FAULTS DUE TO POWER RAILS

 F1;NR-@-1 F1;NS-@-1 F2;NR-@-1 F2;NS-@-1 F3;NR-@-1

 F3;NS-@-1 INACTIVE-@-1 INACTIVE;I1-@-0

SIMIC Report of Undetectable Faults

 BACK-@-0 (12) BACK-@-1 (6) BACK;I1-@-0 (24) BACK;I1-@-1 (12)

 BACK;I2-@-0 (18) BACK;I2-@-1 (12) CLEAR-@-0 (24) CLEAR-@-1 (12)

 CLOCK-@-0 (12) CLOCK-@-1 (12) F1;C-@-0 (12) F1;C-@-1 (12)

 F1;D-@-0 (12) F1;D-@-1 (6) F1;NR-@-0 (12) F1;NS-@-0 (6)

 F2;C-@-0 (12) F2;C-@-1 (12) F2;D-@-0 (12) F2;D-@-1 (6)

 F2;NR-@-0 (12) F2;NS-@-0 (6) F3;C-@-0 (12) F3;C-@-1 (12)

 F3;D-@-0 (12) F3;D-@-1 (6) F3;NR-@-0 (12) F3;NS-@-0 (6)

 INACTIVE-@-0 (6) INACTIVE;I1-@-1 (6) Q1-@-0(12) Q1-@-1 (6)

 Q2-@-0 (12) Q2-@-1 (6) Q3-@-0 (12) Q3-@-1 (6)

SIMIC Report of Detected Faults Sorted By Name

 FAULTS DETECTED BY TEST 6

 BACK-@-1 F1;D-@-1 F1;NS-@-0 F2;D-@-1 F2;NS-@-0

 F3;D-@-1 F3;NS-@-0 INACTIVE-@-0 INACTIVE;I1-@-1 Q1-@-1

 Q2-@-1 Q3-@-1

 FAULTS DETECTED BY TEST 12

 BACK-@-0 BACK;I1-@-1 BACK;I2-@-1 CLEAR-@-1 CLOCK-@-0

 CLOCK-@-1 F1;C-@-0 F1;C-@-1 F1;D-@-0 F1;NR-@-0

 F2;C-@-0 F2;C-@-1 F2;D-@-0 F2;NR-@-0 F3;C-@-0

 F3;C-@-1 F3;D-@-0 F3;NR-@-0 Q1-@-0 Q2-@-0

 Q3-@-0

 FAULTS DETECTED BY TEST 18

 BACK;I2-@-0

 FAULTS DETECTED BY TEST 24

 BACK;I1-@-0 CLEAR-@-0

SIMIC Report of Detected Faults Organized By Test

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 26

Section 4 Tester Program Generation

Debugging a test program on a production tester is expensive; it ties up the tester and the test

engineer’s time, and reduces the amount of time the tester is available to test product. With

decreasing prices of computers and workstations, there is strong pressure to use the simulator for

test program debugging—at the minimum, to determine timing tolerances for the device on the

tester, and at the maximum, to actually simulate the device operating in the tester environment. In

all approaches, the stimuli applied during simulation are retimed to emulate tester timing genera-

tors, and the device outputs are strobed when the tester would strobe them. Bidirectional busses

require special handling; they are sometimes driven and sometimes strobed, depending on who’s

driving the bus.

After the design has passed functional verification and timing analysis, a set of test vectors must

be generated that describe the input stimuli as timing generators and associated patterns applica-

ble to the tester. They may included a slow-speed functional section and a high-speed functional

section (“at-speed” tests). Regardless of the simulator’s stimulus description language, there

should be a compatible mapping to the tester’s driver control statements, so that whatever will be

applied at the tester drivers will also be applied as stimuli during simulation. The simulator should

support a strobing mechanism that accurately emulates strobing on the tester and warns of chang-

ing signal values within active strobe windows.

The simulation should provide adequate information to correctly determine the time that the bi-

directional pads change from being driven internally to requiring external drive, or vice versa,

since the tester must then switch from sensing the pad to driving it, or vice versa. This information

is necessary to assure non-destructive testing—preventing the tester from driving conflicting val-

ues when the chip drives the pad, and ensuring that these pads are always driven (to avoid damag-

ing chip input buffers because of floating inputs).

Finally, if a problem is found on the tester, there should be a direct method for mapping the test

number to simulation time. Changes made to the test program should be easy to backannotate to

the stimulus/strobe descriptions for verification.

Can current commercial simulators accept stimulus descriptions corresponding to tester drive

specifications and determine whether outputs change within strobe windows? Can information on

bidirectional bus states be readily obtained from them? Except for SIMIC, external programs are

required to format simulator stimulus descriptions from timing generator constructs and analyze

voluminous simulation output data to resolve output strobing and bidirectional pad issues.

In contrast, SIMIC supports a tester emulation mode, where stimuli can be described in terms of

timing generators (non-return-to-zero, return-to-zero, return-to-one, and return-to-complement)

that allow flexible drive/float control (no-envelop, return-to-drive, and return-to-float). Full time-

set switching is supported. Output strobes can be placed exactly where they will occur on the

tester, and SIMIC automatically issues warning messages when an output changes within a strobe

window. SIMIC generates a tester interface file containing stimulus/response test vectors for each

tester period In this file, bidirectional pads properly contain the correct driving or driven values.

SIMIC Engineering Guide For IC Design Verification

11/8/93 Genashor Corp. Page 27

Conclusion

This Guide has described simulation capabilities that we believe are essential for IC design verifi-

cation. They are not the result of an intellectual exercise, but rather were obtained from years of

experience developing and supporting simulators. One such simulator was used by an ASIC

design group that turned out an average of one design per day with a 99% track record of first-

time working silicon. While supporting this group, we quickly learned that a design verification

tool had to be robust, accurate, easy to use, and had to contain an extremely comprehensive suite

of functional and timing checks.

We hope this material has been informative and helpful. Many simulation issues were covered;

circuit response time, oscillation and wire-tie conflicts, simulation accuracy and component inter-

action, combinational hazards, X-pulse propagation, functional timing checks, interactive debug-

ging, and tester program debugging. We hope it has given you a better perspective on these issues,

on what to look for when evaluating a simulator’s capabilities, and on the capabilities you want at

your disposal when you debug your next design.

And, with this gained perspective, we hope that you will want SIMIC in your tool suite for that

extra insurance against committing designs to silicon that might not be fully scrutinized. After

reading this Guide, you now know that SIMIC supports every feature described (and, in fact, a

large number of features that were not described), while other commercial simulators lack many

of them. After reading this Guide, we believe that you will arrive at the one conclusion that we

know to be a fact; that SIMIC is, by far, the best tool available for finding and fixing problems in

IC designs.

